首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4175篇
  免费   1319篇
  国内免费   2046篇
测绘学   71篇
大气科学   2668篇
地球物理   817篇
地质学   2314篇
海洋学   299篇
天文学   21篇
综合类   226篇
自然地理   1124篇
  2024年   13篇
  2023年   88篇
  2022年   201篇
  2021年   262篇
  2020年   252篇
  2019年   293篇
  2018年   242篇
  2017年   225篇
  2016年   219篇
  2015年   255篇
  2014年   318篇
  2013年   338篇
  2012年   325篇
  2011年   290篇
  2010年   283篇
  2009年   365篇
  2008年   362篇
  2007年   392篇
  2006年   415篇
  2005年   324篇
  2004年   269篇
  2003年   243篇
  2002年   239篇
  2001年   252篇
  2000年   219篇
  1999年   174篇
  1998年   137篇
  1997年   115篇
  1996年   104篇
  1995年   65篇
  1994年   54篇
  1993年   56篇
  1992年   32篇
  1991年   43篇
  1990年   25篇
  1989年   17篇
  1988年   8篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   3篇
  1954年   4篇
排序方式: 共有7540条查询结果,搜索用时 31 毫秒
21.
Tibetan lake levels are sensitive to global change, and their variations have a large impact on the environment, local agriculture and animal husbandry practices. While many remote sensing data of Tibetan lake level changes have been reported, few are from in-situ measurements. This note presents the first in-situ lake level time series of the central Tibetan Plateau. Since 2005, daily lake level observations have been performed at Lake Nam Co, one of the largest on the Tibetan Plateau. The interannual lake level variations show an overall increasing trend from 2006 to 2014, a rapid decrease from 2014 to 2017, and a surge from 2017 to 2018. The annual average lake level of the hydrological year (May-April) rose 66 cm from 2006 to 2014, dropped 59 cm from 2014 to 2017, and increased 20 cm from 2017 to 2018, resulting in a net rise of 27 cm or an average rate of about 2 cm per year. Compared to the annual average lake level based on the calendar year, it is better to use the annual average lake level based on the hydrological year to determine the interannual lake level changes. As the lake level was stable in May, it is appropriate to compare May lake levels when examining interannual lake level changes with fewer data. Overall, remote sensing results agree well with the in-situ lake level observations; however, some significant deviations exist. In the comparable 2006-2009 period, the calendar-year average lake level observed in-situ rose by 10-11 cm per year, which is lower than the ICESat result of 18 cm per year.  相似文献   
22.
Animal husbandry and crop farming are specialized for development in separate areas on the Tibetan Plateau. Such a pattern of isolation has led to current concerns of rangeland and farming system degradation due to intensive land use. The crop-livestock integration, however, has been proven to increase food and feed productivity thorough niche complementarity, and is thereby especially effective for promoting ecosystem resilience. Regional synergy has emerged as an integrated approach to reconcile rangeland livestock with forage crop production. It moves beyond the specialized sectors of animal husbandry and intensive agriculture to coordinate them through regional coupling. Therefore, crop-livestock integration (CLI) has been suggested as one of the effective solutions to forage deficit and livestock production in grazing systems. But it is imperative that CLI moves forward from the farm level to the regional scale, in order to secure regional synergism during agro-pastoral development. The national key R & D program, Technology and Demonstration of Recovery and Restoration of Degraded Alpine Ecosystems on the Tibetan Plateau, aims to solve the problems of alpine grassland degradation by building up a grass-based animal husbandry technology system that includes synergizing forage production and ecological functioning, reconciling the relationship between ecology, forage production and animal husbandry, and achieving the win-win goals of curbing grassland degradation and changing the development mode of animal husbandry. It is imperative to call for regional synergy through integrating ecological functioning with ecosystem services, given the alarming threat of rangeland degradation on the Tibetan Plateau. The series of papers in this issue, together with those published previously, provide a collection of rangeland ecology and management studies in an effort to ensure the sustainable use and management of the alpine ecosystems.  相似文献   
23.
An approach for nonstationary low‐flow frequency analysis is developed and demonstrated on a dataset from the rivers on the Loess Plateau of China. Nonstationary low‐flow frequency analysis has drawn significant attention in recent years by establishing relationships between low‐flow series and explanatory variables series, but few studies have tested whether the time‐varying moments of low flow can be fully described by the time‐varying moments of the explanatory variables. In this research, the low‐flow distributions are analytically derived from the 2 basic explanatory variables—the recession duration and the recession coefficient—with the assumption that the recession duration and recession coefficient variables follow exponential and gamma distributions, respectively; the derived low‐flow distributions are applied to test whether the time‐varying moments of explanatory variables can explain the nonstationarities found in the low‐flow variable. The effects of ecosystem construction measures, that is, check dam, terrace, forest, and grassland, on the recession duration and recession coefficient are further discussed. Daily flow series from 11 hydrological stations from the Loess Plateau are used and processed with a moving average technique. Low‐flow data are extracted following the pit under threshold approach. Six of the 11 low‐flow series show significant nonstationarities at the 5% significance level, and the trend curves of the moments of low flow are in close agreement with the curves estimated from the derived distribution with time‐dependent moments of the recession duration and time‐constant moments of the recession coefficient. It is indicated that the nonstationarity in the low‐flow distribution results from the nonstationarity in the recession duration in all 6 cases, and the increase in the recession duration is resulted from large‐scale ecosystem constructions rather than climate change. The large‐scale ecosystem constructions are found to have more influence on the decrease in streamflow than on the increase in watershed storage, thus resulting in the reduction of low flow. A high return period for the initial fixed design value decreases dramatically with an increasing recession duration.  相似文献   
24.
ABSTRACT

This study investigated the late Quaternary climate and environmental characteristics of two tributary valleys (Xingmu and Depu Valleys) in the Parlung Zangbo Valley, southeastern Tibetan Plateau. Optically stimulated luminescence (OSL) samples collected from moraines at the mouth of Xingmu Valley produce a wide age range from 13.9 ka to 76 ka. The ages measured from the lenticular sand are consistent with the relative geomorphic sequence of the landforms. Lenticular sand layers below the moraine were dated to 37.9 ka and 44.7 ka, indicating that fluvial processes were likely dominant in the valley during Marine Isotope Stage (MIS) 3. The outer moraine ridges at the valley mouth were formed during 13.9 ka and 26.5 ka, corresponding to MIS2. At Depu Valley, OSL samples from two sets of lateral and terminal moraines close to the modern glacier, provide ages from 1.4 ka to 29.2 ka. The paleosol layer widely developed during 2.6 cal ka BP and 8.7 cal ka BP in the study area, reflecting a relatively warm condition during the mid-Holocene.  相似文献   
25.
末次间冰期以来源自中亚的粉尘记录的对比   总被引:1,自引:0,他引:1  
中亚干旱区是全球重要的粉尘源区, 粉尘经过不同的大气环流系统的搬运和具体的沉积条件, 在其传输路径上沉积于不同的介质中, 如冰芯、黄土、湖泊和深海. 在前人所做工作的基础上, 以古里雅冰芯、宝鸡黄土剖面、琵琶湖风尘沉积、北太平洋风尘沉积和格陵兰冰芯等记录进行对比, 初步讨论近130 ka BP以来上述记录所反映的中亚粉尘的产生、搬运和沉积. 这些记录既表现出一致性, 也存在某些差异, 显示了搬运过程、沉积过程以及区域性因素对粉尘记录的影响.  相似文献   
26.
藏北高原地区地表辐射出支和能量平衡的季节变化   总被引:15,自引:5,他引:10  
马伟强  马耀明  李茂善  Z.   《冰川冻土》2005,27(5):673-679
对青藏高原地区地表能量的研究是一个十分重要的问题.基于中日合作项目"全球协调加强观测计划之亚澳季风青藏高原试验"(CAMP/Tibet)在2001年8月至2002年9月的观测数据资料,分析研究了青藏高原藏北地区地表能量,即净辐射通量、感热通量、潜热通量和土壤热通量等的变化规律,获得了有关藏北高原地表能量的新认识.  相似文献   
27.
It is still not well understood if subseasonal variability of the local PM2.5 in the Beijing-Tianjin-Hebei (BTH) region is affected by the stratospheric state. Using PM2.5 observations and the ERA5 reanalysis, the evolution of the air quality in BTH during the January 2021 sudden stratospheric warming (SSW) is explored. The subseasonal variability of the PM2.5 concentration after the SSW onset is evidently enhanced. Stratospheric circumpolar easterly anomalies lasted for 53 days during the January–February 2021 SSW with two evident stratospheric pulses arriving at the ground. During the tropospheric wave weakening period and the intermittent period of dormant stratospheric pulses, the East Asian winter monsoon weakened, anomalous temperature inversion developed in the lower troposphere, anomalous surface southerlies prevailed, atmospheric moisture increased, and the boundary layer top height lowered, all of which favor the accumulation of pollutant particulates, leading to two periods of pollution processes in the BTH region. In the phase of strengthened East Asian winter monsoon around the very beginning of the SSW and another two periods when stratospheric pulses had reached the near surface, opposite-signed circulation patterns and meteorological conditions were observed, which helped to dilute and diffuse air pollutants in the BTH region. As a result, the air quality was excellent during the two periods when the stratospheric pulse had reached the near surface. The increased subseasonal variation of the regional pollutant particulates after the SSW onset highlights the important role of the stratosphere in the regional environment and provides implications for the environmental prediction.  相似文献   
28.
The current work examines the impact of the snow cover extent (SCE) of the Tibetan Plateau (TP) on the interannual variation in the summer (June?July?August) surface air temperature (SAT) over Central Asia (CA) (SAT_CA) during the 1979?2019 period. The leading mode of the summer SAT_CA features a same-sign temperature anomalies in CA and explains 62% of the total variance in SAT_CA. The atmospheric circulation associated with a warming SAT_CA is characterized by a pronounced high-pressure system dominating CA. The high-pressure system is accompanied by warm advection as well as descending motion over CA, favoring the warming of the SAT_CA. Analysis shows that the interannual variation in the summer SAT_CA is significantly positively correlated with the April SCE over the central-eastern TP. In April, higher than normal SCE over the central-eastern TP has a pronounced cooling effect on the column of the atmosphere above the TP and can persist until the following early summer. Negative and positive height anomalies appear above and to the west of the TP. In the following months, the perturbation forcing generated by the TP SCE anomalies lies near the western center of the Asian subtropical westerly jet (SWJ), which promotes atmospheric waves in the zonal direction guided by the Asian SWJ. Associated with this atmospheric wave, in the following summer, a significant high-pressure system dominates CA, which is a favorable condition for a warm summer SAT_CA.  相似文献   
29.
The seasonal and diurnal variations of cloud systems are profoundly affected by the large-scale and local environments. In this study, a one-year-long simulation was conducted using a two-dimensional cloud-resolving model over the Eastern Tibetan Plateau (ETP) and two subregions of Eastern China: Southern East China and Central East China. Deep convective clouds (DCCs) rarely occur in the cold season over ETP, whereas DCCs appear in Eastern China throughout the year, and the ETP DCCs are approximately 20%?30% shallower than those over Eastern China. Most strong rainfall events (precipitation intensity, PI> 2.5 mm h?1) in Eastern China are related to warm-season DCCs with ice cloud processes. Because of the high elevation of the ETP, the warm-season freezing level is lower than in Eastern China, providing favorable conditions for ice cloud processes. DCCs are responsible for the diurnal variations of warm-season rainfall in all three regions. Warm-season DCCs over the ETP have the greatest total cloud water content and frequency in the afternoon, resulting in an afternoon rainfall peak. In addition, rainfall events in the ETP also exhibit a nocturnal peak in spring, summer, and autumn due to DCCs. Strong surface heat fluxes around noon can trigger or promote DCCs in spring, summer, and autumn over the ETP but produce only cumulus clouds in winter due to the cold and dry environment.  相似文献   
30.
Precipitation over the Tibetan Plateau (TP) is important to local and downstream ecosystems. Based on a weighting method considering model skill and independence, changes in the TP precipitation for near-term (2021–40), mid-term (2041–60) and long-term (2081–2100) under shared socio-economic pathways (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSSP3-7.0, SSP5-8.5) are projected with 27 models from the latest Sixth Phase of the Couple Model Intercomparison Project. The annual mean precipitation is projected to increase by 7.4%–21.6% under five SSPs with a stronger change in the northern TP by the end of the 21st century relative to the present climatology. Changes in the TP precipitation at seasonal scales show a similar moistening trend to that of annual mean precipitation, except for the drying trend in winter precipitation along the southern edges of the TP. Weighting generally suggests a slightly stronger increase in TP precipitation with reduced model uncertainty compared to equally-weighted projections. The effect of weighting exhibits spatial and seasonal differences. Seasonally, weighting leads to a prevailing enhancement of increase in spring precipitation over the TP. Spatially, the influence of weighting is more remarkable over the northwestern TP regarding the annual, summer and autumn precipitation. Differences between weighted and original MMEs can give us more confidence in a stronger increase in precipitation over the TP, especially for the season of spring and the region of the northwestern TP, which requires additional attention in decision making.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号